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SUMi4ARY 

A compartmental model is presented for tracer experiments with a fixed 

and known amount of tracer material which is injected initially into a single 

compartment and accumulates in another compartment. 

as a description of chemical reactions. 

The model could also arise 

The model is represented as a system 

of linear combinations of exponentials with common exponential parameters. 

Then a simultaneous estimation procedure, which is a generalization of the 

Spearman estimation procedure presented by Johnson and Brown [1961] for a single 

equation, is developed for this model under the assumption that the values of 

the independent variable in the model are equally spaced on a logarithmic 

scale. 

an example is given. 

Asymptotic properties of the estimation procedure are investigated and 
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1 INTRODUCTION 

Data from tracer experiments often are represented by the model 

and E where Yij represent random variables associated with the jth observation ij 
th on the i equation, i=1,2, ..., n,x represents an independent variable, and the 

Q: 

model, with certain relationships specified among the CII coefficients, is 

presented in Section 2 for tracer experiments which can be represented by a 

compartmental model with a fixed and known amount of tracer which is injected 

into the first compartment initially and then accumulates in a second compart- 

ment. 

ment model when the x.'snreequally spaced on a logarithmic scale. 

the model is developed for tracer experiments here, it could also arise, for 

instance, as a model for chemical reactions such as those discussed by Box and 

Draper [ 1965 1. 

j 
' s  and 1 ' s  are parameters inherent in the experimental situation. This i 1c k 

ik 

In Section 3 an estimation procedure is developed for this tracer experi- 

Although 
J 

Since the exponential parameters X 1,X2,...,h appear in each one of 

the regression equations of (l.l), we make use simultaneously of all of the 

observations on all of the equations being studied to estimate these parameters. 

Beauchamp and Cornell [1966], Turner et a1 [1963], and Zellner C19621 present 

simultaneous least squares estimation procedures. However, Zellner considers 

n 

only linear regression equations, Turner et a1 assume that the covariance matrix 

of the cij is known, and the procedures in Turner et al, and Beauchamp and Cornell, 

are often difficult to compute. 

a simple alternative tothe least squares procedures or can be used to compute 

Therefore the procedure presented here provides 

initial estimates for such procedures. The estimation procedure presented in 
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Section 3 is a generalization of the Spearman estimation technique presented by 

Johnson and Brown c19611, who considered the estimation problem for n=l and 

-all= 1 in equation (l.l), that is, for a single equation simple exponential 

regression model. In Section 4 some of the asymptotic properties of the estimators 

. found by the procedure developed in Section 3 are stated. An example showing the 

application of the procedure for a particular regression model is given in Section 

5. 

2. MODELS 

The use of radioactive tracer material is an example of an experimental 

situation which yields data that may be described by the set of regression equations 

given by (1.1). 

the formulation of mathematical models for such experiments. 

experiment these formulations represent an organism by several chemical states 

or sites of a physiological substance designated as compartments. 

that there are fixed transition probabilities or turnover rates from one compart- 

ment to another, and the whole system is assumed to be in steady state. 

turnover rates are also assumed to be proportional to the amounts of material 

in the compartments. The mammillary and catenary systems are two examples of 

compartmentalized systems in steady state and Sheppard [1962] gives a detailed 

discussion of these systems. 

(1) The catenary system involves (n+l) compartments that may be thought of as 

arranged in a chain-like manner where each compartment has non-zero transition 

rates only with the compartments adjacent to it. 

(2) 

rates with a central compartment but no turnover between the n peripheral 

compartments. 

Berman and Schoenfeld c19561 and Sheppard E19621 have discussed 

In a biological 

It is assumed 

The 

- 

These models may be formally described as follows: 

The mammillary system involves n peripheral compartments that have turnover 
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I f  we want t o  consider t he  expected values of our observations a s  being 

continuous functions of the  independent var iable ,  then we denote t h i s  by wri t ing  

x i n  place of x t h a t  is ,  x denotes any a r b i t r a r y  value and x represents  a 
1’ j 

I par t i cu la r  f ixed value. From the  discussion i n  the  preceding paragraphs, the 

following s e t  of d i f f e r e n t i a l  equations i s  formed t o  descr ibe the  general  (n-kl) 

compartmental problem: 

- 

f o r  

the  

ht 

i=1,2, .  . . ,n+l, where E[Yi(x) 1 i s  the expected amount of labeled mater ia l  i n  

t h  i compartment a t  time x, T is the f r ac t iona l  amount of mater ia l  i n  the  i h  
t h  compartment flowing t o  the  i compartment per un i t  time, and 

7 . .  = c Thi * 
11 h-1 

M i 

Berman and Schoenfeld [1956] show tha t  the  so lu t ion  t o  (2.1) is  

n+l -XkX 
EIYi(x)l = C aike 

k=l 

f o r  i=1,2, ..., n+l, where the  coef f ic ien ts  aik a re  functions of the  7 

i n i t i a l  conditions of the  experiment. Let T be an (n+l) X (n+l) matrix whose 

diagonal elements a re  given by T~~ and off diagonal elements a r e  given by - T 
Then X1,X2,. . . , 1 a r e  the  cha rac t e r i s t i c  roots  of 7.  Throughout t h i s  paper 

we assume t h a t  the c h a r a c t e r i s t i c  roots of T a r e  r e a l  and d i s t i n c t .  

and the  i h  

i h  

n+l 

From equation (2.2) we note tha t  the  number of exponential terms i n  each 
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equation is determined by the number of nonzero characteristic roots of 7, which 

is either n or n+l when these roots are distinct and which is also equal to the 

rank of T. By investigating the matrix T for the general (n+l) - compartment 
catenary and mammillary systems, we can show that the rank of 7 is equal to n, 

so exactly one A, say A is zero. In addition, when the amount of tracer 

material in the system is fixed and known, we can express the system of equations 
n+l’ 

given in equation ( 2 . 2 )  in terms of new quantities which represent the proportions 

of labeled material in the compartments at time x.  

only n independent equations in (2.2) since 

In this instance there are 

n+l 
C EIYi(x)l 
i=l 

is fixed €or all x. We also impose the following conditions: (1) EIY1(0)l = 

E[Y2(+ -)I = 1 and (2) EIY1(+ m ) ]  = E[Y2(0)] = 0, which would be satisfied by 

an (n+l) - compartment catenary or mammillary system where a fixed amount of 
tracer material is injected into the first compartment of the system and is 

allowed to accumulate in the second compartment of the system. We may now 

combine the above discussion into the following theorem: 

Theorem 1: The regression model used to describe the general (n+l) - compart- 
ment catenary or mammillary systems, when a fixed and known amount of tracer 

material is injected into the first compartment and accumulates in the second 

compartment of the system, is given by the model in equation (1.1) with the 

following relations satisfied by the coefficients of (1.1): 

(1) “l,a+l= 0; a = ball- . . -0 In 1,n-f ’ 

(2) a2,n+l ’1; a 2n = - (a21+ a22+...+ a2,J 012,n+l 1 

= - “w2,n-1) , 
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= 0 f o r  i=3,4, ..., n, (3) ai,n+l 

(4) ain = - (ail+ ai2+".wi,n-l ) f o r  i=3,4 ,..., n. 

During the development of the estimation procedure given i n  the  next 

section, the  only assumption t h a t  we need t o  make about the  random variables  

E However, addi t ional  assumptions are 

needed i n  order t o  invest igate  some of the asymptotic properties of the estimators 

found by t h i s  procedure and these assumptions a r e  given i n  Sect ion.4.  

i s  t h a t  E(eij) = 0 f o r  a l l  i and j. 
i j  

' 

3. GENERALIZED SPEARMAN ESTIMATION 

I n  t h i s  sect ion w e  develop an estimation procedure f o r  equally spaced 

x values on a logarithmic scale, which i s  a general izat ion of the Spearman estimation 

procedure presented by Johnson and Brown [1961], t o  estimate the parameters i n  

the  regression model given i n  Theorem 1. We assume here tha t  the independent 

var iab le  i s  of the form x = exp(z). 

equations of our model a re  of two d i f fe ren t  types: 

From Theorem 1 we note t h a t  the regression 

(3 1) 
z n-1 

k=l 
E[Yi(z)] = C a. l k  exp(-h k e ) + (l-ail- ...-a i ,n-1 )exp(-hne2) , 

i=l ,2;  

i=3,4, ..., n. Thenconsideration of equation (3.1) and the i n t e g r a l  

f o r  s=1,2, ..., n, leads ,a f te r  extensive algebra,  t o  the relat ionship 
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i=1,2, where 

Ki2 = Id2)+ 1 12- 211Kil 

00 h -t Ih = 1 (ant) e dt, h=1,2,.. .,n, 
0 

IC 
and the A ,r=1,2,...,n, are the n elementary symmetric functions of the JnX r 
That is, A equals the sum of all possible products of the terms $n\ taken 

r at a time. Also, equations(3.2) and ( 3 . 3 )  can be used to show that 
r 

'i,n-lA1+ 1 K;,n-2 A 2 +...+ Kf2Anm2+ KflAn-l = Kin , 

i = 3 , 4 ,  ..., n, where 

n -. . . -(n-l)I K' Kin 1 1 i,n-1 

and I and A are defined above. The detailed algebra leading 

( 3 . 5 )  is given by Beauchamp [1966]. 

h r 

( 3  5) 

to ( 3 . 4 )  and 

From the set of linear equations in the Arts given by ( 3 . 4 )  and ( 3 . 5 ) ,  
I 

we solve for  the quantities \,A2, ..., An in terms of the K's and K ' s .  Using 
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these so lu t ions  w e  proceed t o  solve for  .hhl,Jnhp, ..., h h n ,  by applying the  

same technique as discussed by Cornel1 119621, t ha t  i s ,  we obtain the  n roots  

of the  polynomial 

w I- (-l)"An = 0 . n n-1 w - A 1 wn-l+ A2wn-2-. . .+(-1) 
'n-1 

These roots ,  say wk,k=1,2, ... ,n, a r e  re la ted  t o  the  

where the ordering of the hlCts i s  a rb i t r a ry .  

parameters by )lk= exp(wk), 

tle note t h a t  the  solut ions fo r  

Xk,k=1,2, ..., n, a r e  functions of the K ' s  and Kits, which, i n  turn,  a r e  functions 

of known constants  and the unknown quan t i t i e s  p!') f o r  i ,s=1,2,  ..., n. 

i n  order t o  obtain estimators of the exponential parameters we need only t o  

Hence, 
1 

(SI . propose est imators  f o r  the  pi 

The observations fo r  each regression equation of our model a r e  taken i n  

a manner similar t o  t h a t  discussed by Johnson and Brown [1961], t h a t  is, f o r  an 

odd number of observations the  values of the independent var iable  a r e  given by 

z 

values of the independent var iab le  a re  given by z = z + d(j+%) f o r  j = O , f l , f 2 , . . . ,  

= z + j d  where j=0,21,22, ..., kM, and for  an even number of observations the  j 0 

j 0 

rh  *(M-1), -M. L e t  y represent t h e  value of the  j t h  observation on the  i i j  

equation. 

we take as an estimator of p i s )  the  sum 

Then by considering the  de f in i t i on  of a Riemann-Stieltjes i n t eg ra l ,  

N - 1  Z . + Z  

= c ( ' 2i+l)sAyij , 
'i j = - M  

(3.7) 

where bij= yi,j+l- yij,z has been defined e a r l i e r ,  and N=M-l  i f  an even number 

of observations i s  taken and N=M i f  an odd number of observations i s  taken. We 

assume t h a t  M i s  large enough so t ha t  y 

j 

= E[Yi(-=) 1 and y i , N  = E[Yi(m) 1. i, -M 
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P i s )  given by (3.13) in the expressions for 

estimators of the X.,k=l,2,...,n. 
1 

Next we want to estimate the coefficients or linear parameters in our 

regression model. To obtain these estimators we substitute the estimators of the 

xlc) found by the generalized Spearman estimation procedure described above, into 

our set of n independent regression equations. 

ik ' of n regression equations which are linear in the unknown coefficients a! 

Therefore, to estimate these coefficients we use the weighted least squares 

procedure as given by Zellner [1962] if it is reasonable to assume that the 

covariance matrix of the random variables E is known apart from a constant ij 
multiplier. Otherwise, we apply a weighted least squares procedure using an 

estimated covariance matrix as discussed by Beauchamp and Cornel1 [19661 and 

Telser [1964]. 

estimation of the exponential or nonlinear parameters by a generalized Spearman 

estimation procedure; and (2) the estimation of the coefficients or linear para- 

meters by a weighted least squares procedure after substituting the estimates 

of the nonlinear parameters into the regression equations. 

experiments estimation of the exponential parameters is of primary importance 

so that only the first step might be completed. 

After doing this we have a set 

So our estimation procedure involves two main steps: (1) the 

In most tracer 

4 .  EVALUATION OF THE ESTIMATORS 

In order to apply the estimation procedure developed in Section 3, we 

need only assume that E(€..) = 0 for all i and j and that M is large enough 

so that y The consistency of 

the estimators of the exponential parameters can be shown under the following 

additional assumptions: 

(1) For fixed i, the random variables E 

1 3  

= E[Yi(-m)] and yiN = E[Y.(m)l for all i. i, -M 1 

where i=1,2, ..., n and j=0,*1,*2, ...,* M ij' 
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or j=O,fl,f2, ...,+( M-l),-M, are uncorrelated with finite variance such that 

Var(E. ) tends to zero as M 34). 

(2) For i*.u and j*v, the random variables E and E are uncorrelated. 

(3)  For i,s=1,2, ..., n, 

iM 

ij uv 

lim Var(pi 
M + w  

exists and equals zero. 

(4) 

The consistency of the estimators of the exponential parameters is demonstrated 

For all j,d=zj+l- z is such that lim d = 0 and lim dM = 4). 

M + a  M - 4 )  j 

by Beauchamp E19661 by considering the estimators as functions of the h ( S )  Pi 

estimators defined in (3.7), and applying the definition of a Riemann-Stieltjes 

integral and a form of Tchebycheff's theorem given by Cramlr [1946]. Using the 

same set of assumptions, it can also be shown that the estimators of the linear 

parameters are also consistent if these estimators are continuous functions of 

the 1 's, the estimators of the exponential parameters, and if the covariance 

matrix of the cij's is specified apart from a constant multiplier or is replaced 

by a consistent estimator in the weighted least squares calculations. 

h 

k 

h 

If X represents the n X 1 vector of estimators of the exponential 

parameters whose true values are given by the vector A, then it can be shown that 
1, 3 h 

as M + 00, (l-A)/[d (M+N-2)]'* has a limiting multivariate normal distribution 

under the assumptions stated at the beginning of this section plus the additional 

assumption that the elements of A have continuous second order derivatives of 
h 

h 

every kind with respect to the elements of p:)> where 

represents the transpose of a vector. The mean vector of this limiting distri- 

bution is shown to be equal to the zero vector and the covariance matrix is given by 
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A(*)- E ( P r ) ) ,  F = (F1,F2 T T  ,..., Fn> T T  , A 

where d,M, and N are defined in Section 3, E*,= W* 

and 
n A A A 

evaluated at the point ir’= pr’ for k=1,2, ..., n. Each entry in this covariance 

matrix exists under the assumptions given above. 

are also given by Beauchamp [1966]. 

The details of this demonstration 

5 .  EXAMPLE 

In this section we apply the estimation technique developed in Section 3 

to the set of data given in Table 1. 

compartmental model represented by the following diagram for a tracer experiment: 

These data have been generated for a 

The experiment could consist of a test of the rapidity with which particulate 

contamination is removed from a horizantal laminar flow clean room. Compartment 

3 would represent a site near the wall where the air stream enters the laminar 

flow room, while Compartments 2 and 1 would represent sites in the middle and 

at the exhaust end of such a room, respectively. 

in Compartment 3 and the relative amount of contamination in each of the com- 

partments would be determined at time intervals equally spaced on a logarithmic 

scale. 

Contaminants would be released 
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We now note t h a t  we have brought t h i s  example i n t o  the same framework 

as the  general compartmental problem discussed i n  Section 2.  

a system of d i f f e r e n t i a l  equations corresponding t o  those given i n  equation 

(2 .1)  f o r  n=2. 

t he  expected proportion of contamination present a t  t i m e  x i n  the  i 

ment. The following boundary conditions are sa t i s f i ed :  

Therefore we have 

For t h i s  pa r t i cu la r  example l e t  E[Y.(x)], i=1,2,3, represent 
1 

t h  . compart- 

E[Y3(x)l = 1 and E[Y2(x)] = ELYl(x)] = 0 a t  x = 0. 
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TABLE 1 --Data to be fitted by generalized Spearman 
estimation procedure 

-5 

-4 

-3 

-2 

-1 

0 

1 

2 

3 

4 

1 
4 
- 
1 
2 

1 

- 

2 

4 

8 

16 

32 

64 

128 

-1.38630 

-0.69315 

0 

0.69315 

1.38630 

2.07945 

2.77260 

3.46575 

4.15890 

4.85205 

1 00000 

0.92696 

0.87213 

0.75029 

0.60339 

0.37711 

0.18042 

0.05943 

0.02628 

0.00000 

0.00000 

0.01463 

0.02986 

0.04675 

0.10608 

0.16495 

0.19098 

0.14191 

0.09154 

0 00000 
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Corresponding to equation (2.2) we have the following system of equations: 

'AIX - X2X -A3x 
E[Y3(x)1 = a31e + a32e + , 

for all x. 

we take to be the first two. 

l-E[Y (x) 1, then the equation for E[Ti(x) 1 becomes 

Hence there are only two independent equations in (5.1), which 

If we let a1 = -all,x = exp(z), and E[Y;(X)I = 

1 

which is of the same form a s  equation (3.1). 

then the equation for E[Y2(x)l is given by 

In addition, if we let d2 = Q ~ ~ ,  

which is of the sane form as equation (3.2). 

By using the techniques presented in Section 3, we arrive at the 

system of equations corresponding to ( 3 . 4 )  and (3.5) given by 
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The estimates of p"), p:2) , pi1 ) ,  and ~ 1 ' ~ )  f o r  t h i s  par t icu lar  example are 1 2 

h 

n(l)= -1.59148; A(2)= p1 -4.28851; phl)= -0.54531; and b:2)= -2.65332. given by p 2 

t 
Subs t i tu t ing  these values i n t o  the expressions f o r  the  K ' s  and K I s ,  the  system 

of equations given i n  (5.4) becomes 

- 2.16870L1- L2 = 4.81403, 

- 0.54531L1 = 3.26345, (5.5) 

where L and L a r e  the estimates of 5 and A respectively.  Solving ( 5 . 5 ) ,  

1.70- f i n d  L1 = -6.02125 and L2 = 8.24425. 

an1 

1 2 2' 

I n  order t o  obtain the estimates of 

and JnA we ca lcu la te  the roots  of the following quadratic equation: 1 2 

(5.6) 
2 w I- 6 . 0 2 1 2 5 ~  -1- 8.24425 = 0. 

The roots  of (5.6) a r e  given by w = -3.91595 and w2 = -2.10530. We take 
n A 

1 
h 

so our estimates of X and A a r e  X = 0.01990 and X2 = 0.12181, \ = exP(wk), 1 2 1 

respect ively.  

The next s t e p  i n  our estimation procedure i s  t o  estimate the  l i n e a r  

parameters, a 

Table 1 were generated by adding random normal deviates t o  calculated expected 

and a2, i n  equations (5.2) and (5.3). The observations i n  1 
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for each value of j=-4 

covariance matrix Q of 

= E[Y ( z . ) ] ,  and m = 500 where p = E[Y1(zj)1, p2j 
2 3  1j 

through j = 3 .  Therefore in this example we know the 

the random variables E . We now rewrite our regression ij 
model as 

If 

a! and (31 would be given by 

and X2 were known, then the usual weighted least squares estimators of 

1 2 

Q is the covariance matrix of the random variables E * ij’ 

th and y represents the jth observation on the i equation. We now substitute 

the estimates X 
ij 

h h 

and A2 into equation (5.8) giving us the estimates of the 1 
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* A 

psrameters 0: and CU2, denoted by a = 0.05501 and = 0.30899, respect ively.  

Graphs showing the or ig ina l  data  (x) with the f i t t e d  regression equations of 

our model a r e  given i n  Figures 1 and 2.  

1 1 
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